kmeans
A C++ library for k-means
Loading...
Searching...
No Matches
Class List
Here are the classes, structs, unions and interfaces with brief descriptions:
[detail level 123]
 NkmeansNamespace for k-means clustering
 CDetailsAdditional statistics from the k-means algorithm
 CInitializeBase class for initialization algorithms
 CInitializeKmeansppk-means++ initialization of Arthur and Vassilvitskii (2007)
 CInitializeKmeansppOptionsOptions for k-means++ initialization
 CInitializeNoneNo-op "initialization" with existing cluster centers
 CInitializeRandomInitialize by sampling random observations without replacement
 CInitializeRandomOptionsOptions to use for InitializeRandom
 CInitializeVariancePartitionImplements the variance partitioning method of Su and Dy (2007)
 CInitializeVariancePartitionOptionsOptions for InitializeVariancePartition
 CMockMatrixCompile-time interface for matrix data
 CConsecutiveAccessWorkspaceWorkspace for access to consecutive observations
 CIndexedAccessWorkspaceWorkspace for access to a indexed subset of observations
 CRandomAccessWorkspaceWorkspace for random access to observations
 CRefineInterface for all k-means refinement algorithms
 CRefineHartiganWongImplements the Hartigan-Wong algorithm for k-means clustering
 CRefineHartiganWongOptionsOptions for RefineHartiganWong
 CRefineLloydImplements the Lloyd algorithm for k-means clustering
 CRefineLloydOptionsOptions for RefineLloyd construction
 CRefineMiniBatchImplements the mini-batch algorithm for k-means clustering
 CRefineMiniBatchOptionsOptions for RefineMiniBatch construction
 CResultsFull statistics from k-means clustering
 CSimpleMatrixA simple matrix of observations