kmeans
A C++ library for k-means
Loading...
Searching...
No Matches
kmeans::Refine< Index_, Data_, Cluster_, Float_, Matrix_ > Class Template Referenceabstract

Interface for k-means refinement algorithms. More...

#include <Refine.hpp>

Inheritance diagram for kmeans::Refine< Index_, Data_, Cluster_, Float_, Matrix_ >:

Public Member Functions

virtual Details< Index_ > run (const Matrix_ &data, Cluster_ num_centers, Float_ *centers, Cluster_ *clusters) const =0
 

Detailed Description

template<typename Index_, typename Data_, typename Cluster_, typename Float_, typename Matrix_ = Matrix<Index_, Data_>>
class kmeans::Refine< Index_, Data_, Cluster_, Float_, Matrix_ >

Interface for k-means refinement algorithms.

Template Parameters
Index_Integer type for the observation indices.
Data_Numeric type for the data.
Cluster_Integer type for the cluster assignments.
Float_Floating-point type for the centroids. This will also be used for any internal distance calculations.
Matrix_Type for the input data matrix. This should satisfy the Matrix interface.

Member Function Documentation

◆ run()

template<typename Index_ , typename Data_ , typename Cluster_ , typename Float_ , typename Matrix_ = Matrix<Index_, Data_>>
virtual Details< Index_ > kmeans::Refine< Index_, Data_, Cluster_, Float_, Matrix_ >::run ( const Matrix_ & data,
Cluster_ num_centers,
Float_ * centers,
Cluster_ * clusters ) const
pure virtual
Parameters
dataA matrix-like object containing per-observation data.
num_centersNumber of cluster centers.
[in,out]centersPointer to an array of length equal to the product of num_centers and data.num_dimensions(). This contains a column-major matrix where rows correspond to dimensions and columns correspond to cluster centers. On input, each column should contain the initial centroid location for its cluster. On output, each column will contain the final centroid locations for each cluster.
[out]clustersPointer to an array of length equal to the number of observations (from data.num_observations()). On output, this will contain the cluster assignment for each observation.
Returns
centers and clusters are filled, and a Details object is returned containing clustering statistics. If num_centers is greater than data.num_observations(), only the first data.num_observations() columns of the centers array will be filled.

The documentation for this class was generated from the following file: