1#ifndef KMEANS_KMEANS_HPP
2#define KMEANS_KMEANS_HPP
52template<
typename Index_,
typename Data_,
typename Cluster_,
typename Float_,
class Matrix_ = Matrix<Index_, Data_> >
61 auto actual_centers = initialize.
run(data, num_centers, centers);
62 auto output = refine.
run(data, actual_centers, centers, clusters);
63 output.sizes.resize(num_centers);
86template<
typename Index_,
typename Data_,
typename Cluster_,
typename Float_>
95 return compute<Index_, Data_, Cluster_, Float_, Matrix<Index_, Data_> >(data, initialize, refine, num_centers, centers, clusters);
101template<
typename Index_,
typename Cluster_,
typename Float_>
106 template<
typename Dim_>
107 Results(Dim_ num_dimensions, Index_ num_observations, Cluster_ num_centers) :
150template<
typename Index_,
typename Data_,
typename Cluster_,
typename Float_,
class Matrix_ = Matrix<Index_, Data_> >
155 Cluster_ num_centers)
158 output.
clusters.resize(data.num_observations());
159 output.
centers.resize(
static_cast<size_t>(num_centers) *
static_cast<size_t>(data.num_dimensions()));
181template<
typename Index_,
typename Data_,
typename Cluster_,
typename Float_>
186 Cluster_ num_centers)
Report detailed clustering statistics.
Class for kmeans++ initialization.
Class for no initialization.
Class for random initialization.
k-means initialization with variance partitioning.
Interface for k-means initialization.
Interface for matrix inputs.
Implements the Hartigan-Wong algorithm for k-means clustering.
Implements the Lloyd algorithm for k-means clustering.
Implements the mini-batch algorithm for k-means clustering.
Interface for k-means refinement.
Wrapper for a simple dense matrix.
Interface for k-means initialization algorithms.
Definition Initialize.hpp:27
virtual Cluster_ run(const Matrix_ &data, Cluster_ num_centers, Float_ *centers) const =0
Interface for matrix data.
Definition Matrix.hpp:130
Interface for k-means refinement algorithms.
Definition Refine.hpp:26
virtual Details< Index_ > run(const Matrix_ &data, Cluster_ num_centers, Float_ *centers, Cluster_ *clusters) const =0
Compute within-cluster sum of squares.
Namespace for k-means clustering.
Definition compute_wcss.hpp:12
Details< Index_ > compute(const Matrix_ &data, const Initialize< Index_, Data_, Cluster_, Float_, Matrix_ > &initialize, const Refine< Index_, Data_, Cluster_, Float_, Matrix_ > &refine, Cluster_ num_centers, Float_ *centers, Cluster_ *clusters)
Definition kmeans.hpp:53
Additional statistics from the k-means algorithm.
Definition Details.hpp:20
Full statistics from k-means clustering.
Definition kmeans.hpp:102
std::vector< Float_ > centers
Definition kmeans.hpp:124
Details< Index_ > details
Definition kmeans.hpp:129
std::vector< Cluster_ > clusters
Definition kmeans.hpp:118