|
irlba
A C++ library for IRLBA
|
Results of the IRLBA-based PCA by pca().
More...
#include <pca.hpp>
Public Attributes | |
| EigenMatrix_ | scores |
| EigenMatrix_ | rotation |
| EigenVector_ | variances |
| int | iterations |
| bool | converged |
Results of the IRLBA-based PCA by pca().
| EigenMatrix_ | A dense floating-point Eigen::Matrix class. |
| EigenVector_ | A floating-point Eigen::Vector class, typically of the same scalar type as EigenMatrix_. |
| bool irlba::PcaResults< EigenMatrix_, EigenVector_ >::converged |
Whether the algorithm converged.
| int irlba::PcaResults< EigenMatrix_, EigenVector_ >::iterations |
The number of restart iterations performed.
| EigenMatrix_ irlba::PcaResults< EigenMatrix_, EigenVector_ >::rotation |
Rotation matrix. Each row corresponds to an feature while each column corresponds to a principal component. The number of rows is equal to the number of rows in matrix, while the number of columns is equal to number (or less, if Options::cap_number is applied).
| EigenMatrix_ irlba::PcaResults< EigenMatrix_, EigenVector_ >::scores |
Matrix of principal component scores. Each row corresponds to an observation while each column corresponds to a principal component. The number of rows is equal to the number of columns in matrix, while the number of columns is equal to number (or less, if Options::cap_number is applied).
| EigenVector_ irlba::PcaResults< EigenMatrix_, EigenVector_ >::variances |
Variance explained by each principal component. The length of this vector is equal to number (or less, if Options::cap_number is applied).